From Mini to Micro Scale—Feasibility of Raman Spectroscopy as a Process Analytical Tool (PAT)
نویسندگان
چکیده
BACKGROUND Active coating is an important unit operation in the pharmaceutical industry. The quality, stability, safety and performance of the final product largely depend on the amount and uniformity of coating applied. Active coating is challenging regarding the total amount of coating and its uniformity. Consequently, there is a strong demand for tools, which are able to monitor and determine the endpoint of a coating operation. In previous work, it was shown that Raman spectroscopy is an appropriate process analytical tool (PAT) to monitor an active spray coating process in a pan coater [1]. Using a multivariate model (Partial Least Squares-PLS) the Raman spectral data could be correlated with the coated amount of the API diprophylline. While the multivariate model was shown to be valid for the process in a mini scale pan coater (batch size: 3.5 kg cores), the aim of the present work was to prove the robustness of the model by transferring the results to tablets coated in a micro scale pan coater (0.5 kg). METHOD Coating experiments were performed in both, a mini scale and a micro scale pan coater. The model drug diprophylline was coated on placebo tablets. The multivariate model, established for the process in the mini scale pan coater, was applied to the Raman measurements of tablets coated in the micro scale coater for six different coating levels. Then, the amount of coating, which was predicted by the model, was compared with reference measurements using UV spectroscopy. RESULTS For all six coating levels the predicted coating amount was equal to the amounts obtained by UV spectroscopy within the statistical error. Thus, it was possible to predict the total coating amount with an error smaller than 3.6%. The root mean squares of errors for calibration and prediction (root mean square of errors for calibration and prediction-RMSEC and RMSEP) were 0.335 mg and 0.392 mg, respectively, which means that the predictive power of the model is not dependent on the scale or the equipment. CONCLUSION The scale-down experiment showed that it was possible to transfer the PLS model developed on a mini scale coater to a micro scale coater.
منابع مشابه
Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spe...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملکاربرد طیفبینی میکرورامان در شناسایی غیرتخریبی بستهای نقاشی ایرانی
Micro-Raman spectroscopy is recently advocated to be used for the identification of organic mediums of paintings although it is mainly used for identifying artists’ pigments. The current paper presents an effort for estimating the feasibility of micro-Raman spectroscopy for identifying Persian binding mediums used in historical paintings. To do so, samples were prepared in two main groups based...
متن کاملSilica (agate-jasper) mineralization in the Chah Andoo plain, SW Damqan by Micro-Raman spectroscopy
The Chah Andoo plain is located about 100 km SW Damqan in Semnan Province. Basalt, andesite-basalt, tuff and metamorphic rocks are the main rocks which exposed in the study area. Agate, jasper and agate–jasper are silica minerals widespread at the plain surface as crushed fragments from a few millimeters to 0.5 meter in dimension. Banded (mono centric), stalactite (landscape), mossy and thunder...
متن کامل